Robust quantum inertial sensors with optical beam shaping
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Introduction

ABSTRACT/SUMMARY

Inertial sensors based on atom interferometry benefit from laser beams of homogeneous intensity and wavefront. Here we present a fiber-coupled athermalized beam shaper retaining these properties over an extended temperature
range, developed for a field-deployed quantum gravimetry within the FIQUgS project. With optimally matched thermal properties of lens and housing materials, we obtain a top-hat collimator design with an RMS wavefront error of
less than 6mA over the entire temperature range and less than 3% intensity variation over the entire propagation range. Our results open perspectives for extending application of top-hat collimators towards different architectures

of atomic inertial sensors demanding enhanced robustness, optical powers and laser beam propagation distances.

Atom interferometry with top-hat beams

BUILDING BLOCKS OF ATOM INTERFEROMETER ANALOGY WITH OPTICS

How does inertial sensitivity appear?

= Coherent interaction between laser
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field & an atom (e.g. Raman transition)
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BENEFITS OF ATOM INTERFEROMETRY WITH TOP-HAT BEAMS

Non-homogeneous atom-

Fiber-coupled collimator
with beam shaping optics
= Wavelength 780 nm

= Top-hat output profile
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Athermalization of fiber coupled beam shaper
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energy redistribution tener for collimation

CLASSICAL ATHERMALIZATION CONDITION
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Collimation condition:

Athermalization condition:
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Matching thermal properties

of housing and glass Best matching glass: N-LAK21

Expected Gravimeter performance (FIQUQS project)

THE DIFFERENTIAL QUANTUM GRAVIMETER IN DEVELOPMENT BY EXAIL
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= Differential Quantum Gravimeter (DQG) is a dual
interferometer quantum gravimeter

= Using a double tracking scheme, we are able to measure both
gravity and vertical gravity gradient simultaneously

= Using the same laser for both interferometers ensures
maximum common mode rejection on gradient

= Leverage the experience acquired in developing the AQG

= Gaussian beam collimator - top-hat collimator possible in future

Gravimeter Gradiometer
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Perspective:

FIQUgS project aims deploying the dedicated version of DQG
+ spectral ground penetrating radar on the robotized platform
for semi-autonomous geophysical surveys on the field
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= Classical equation of motion along the two paths
= Laser phase “imprinted” on diffracted wave function:

FIQUgS is a project initiated by the European Commission under the
,Horizon Europe“ programme, a key EU programme for funding scientific
research and innovation. The project has received funding from the
European Union'‘s Horizon Europe under Grant Agreement n°101080144.
More: www.fiqugs.eu
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30 mm FWHM
= Beam uniformity 0.1
= RMS wavefront error <\10
= Propagation length 2m
= Passive athermalization
0-50°C
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Gaussian beam

expansion of atomic cloud
- loss of interferometric contrast
= Spurious contributions to measured
acceleration
- loss of measurement accuracy

= Acceleration and rotation contributions
AD = G.leegT? — 2keq(T x 5)T>

ATHERMALIZATION OF BEAM SHAPING SYSTEMS

Temperature change mainly introduces wavefront defocus (Z4)
Optimization parameter % =

= Variation of glass properties
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while keeping constant refractive index

= Non-uniform transition probability +

Interpolation of | d Z4 / dT | to real glass data
for selection of optimum glass with low
refractive index and for titanium housing

Best matching glass with low refractive index:

N-KF9

better athermalization than N-LAK21

Degraded efficiency of the atom-optics!

o = Housing titanium alloy

Top-hat beam

= Uniform transition probability

= Elimination of spurious
contributions
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Simulated performance of athermalized top-hat collimator with N-KF9
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SIMULATED TOP-HAT PROFILES AND INTERFEROMETRIC SEQUENCE

Simulation details:
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