

Production capabilities - CustomOptics

DIAMOND TURNING

Ultra-precise cutting using monocrystalline diamond is the key technology for manufacturing virtually any optical functional surface with the utmost precision. This enables the processing of non-ferrous metals, nickel-phosphorus coatings, plastics, crystals and IR lenses.

Manufacturing dimensions [ISO 10110-1]		
Achievable diameters	mm	1 - 420
Center thickness	mm	from 0.51
Surface shape [ISO 10110-1; 12]		up to
Irregularity – B (PV)²	nm	100
RMS irregularity – RMSi – D	nm	20
Surface roughness – Rq	nm	1
1 Depends on diameter and material		

2 Often also called the PV - error of the measured surface. Means the total surface deviation corrected for Sagitta error (power).

Available technologies		
 Diamond turning with 2 and 3 linear axes Fly cutting Slow tool servo 		
Processable materials		
 Copper, aluminum, brass, nickel silver Nickel-phosphorus layers Polycarbonate, PMMA Silicon, germanium, zinc sulfide IR lenses 		
Achievable optical component geometries		
 Aspheres Spheres Cylinders Toroids 	 Microlenses Fresnel structures Diffractive optical elements Freeforms 	

asphericon GmbH

Stockholmer Str. 9 | 07747 Jena Germany

asphericon s.r.o. Milířská 449 | Jeřmanice 463 12 Czech Republic

+420 488 100 300

asphericon, Inc. 2601 Cattlemen Road, Suite 301 Sarasota, FL 34232 | USA

